This article presents a comparative analysis of the potential of two large language model (LLM)-based chatbots—ChatGPT and Bing Chat (recently rebranded to Microsoft Copilot)—to detect veracity of political information. We use AI auditing methodology to investigate how chatbots evaluate true, false, and borderline statements on five topics: COVID-19, Russian aggression against Ukraine, the Holocaust, climate change, and LGBTQ + -related debates. We compare how the chatbots respond in high- and low-resource languages by using prompts in English, Russian, and Ukrainian. Furthermore, we explore chatbots’ ability to evaluate statements according to political communication concepts of disinformation, misinformation, and conspiracy theory, using definition-oriented prompts. We also systematically test how such evaluations are influenced by source attribution. The results show high potential of ChatGPT for the baseline veracity evaluation task, with 72% of the cases evaluated in accordance with the baseline on average across languages without pre-training. Bing Chat evaluated 67% of the cases in accordance with the baseline. We observe significant disparities in how chatbots evaluate prompts in high- and low-resource languages and how they adapt their evaluations to political communication concepts with ChatGPT providing more nuanced outputs than Bing Chat. These findings highlight the potential of LLM-based chatbots in tackling different forms of false information in online environments, but also point to the substantial variation in terms of how such potential is realized due to specific factors (e.g. language of the prompt or the topic).
Read full abstract