With the aim of obtaining information on the process of iodination of thyroglobulin, the properties and subcellular distribution of thyroglobulin labeled with radioiodine, 3H-tyrosine, or 3H-galactose were studied. The following results were obtained for 17-19S thyroglobulin isolated from rat thyroid lobes labeled in vitro. (a) The effect of sodium dodecyl sulfate (SDS) concentration (0.1-2.0 mM) on the dissociability of the proteins into 12S subunits showed that 3H-labeled, 131I-labeled, and preformed thyroglobulin behaved very differently; their dissociability decreased in that order. In addition, 0.3 mM SDS is most suitable for discriminating among these species. (b) The amount of 0.3 mM SDS-resistant 131I-thyroglobulin increased with the time of incubation of the lobes or with the amount of iodine atoms incorporated by chemical iodination. (c) Digestion of 3H-tyrosine-labeled thyroglobulin showed that 3H-monoiodotyrosine and 3H-diiodotyrosine were present after incubation of the lobes for 180 min. (d) The dissociability of 3H-galactose-labeled 17-19S thyroglobulin was higher than that of 131I-labeled protein, but its elution pattern on DEAE-cellulose chromatography resembled that of the latter. (e) 131I-Thyroglobulin was scarcely found in the incubation medium, although a considerable amount of 19S thyroglobulin was released into the medium during the incubation. As for the lobes, a significant amount of 131I-radioactivity as well as 3H-radioactivity was found in cytoplasmic particulates, especially in fractions containing apical vesicles and rough microsomes. On the other hand, the following results were obtained for 17-19S thyroglobulin isolated from rats injected with 125I. (a) Dissociability of the protein by 0.3 mM SDS and analysis of 125I-iodoamino acids of pronase digest showed that the iodination process was essentially similar to the case of in vitro incorporation, but was faster. (b) The effect of cyclohiximide treatment showed that the relative reduction of 0.3 mM SDS dissociable species was probably due to a shortage of newly synthesized proteins. All the results obtained in the present experiments are compatible with the view that iodine atoms are incorporated selectively into newly synthesized, less iodinated thyroglobulin, and that the iodination occurs intracellularly, at least to a certain degree, after carbohydrate attachment, probably in the apical vesicles. The possibility that iodination also occurs to some extent in the endoplasmic reticulum and in the colloid lumen of thyroglobulin-stimulated thyroids is discussed.
Read full abstract