The exponential increase in vehicles, quick urbanization, and rising demand for transportation are straining the world’s road infrastructure today. To have a sustainable transportation system with dynamic traffic volume, an Adaptive Traffic Signal Control system (ATSC) should be contemplated to reduce urban traffic congestion and, thus, help reduce the carbon footprints/emissions of greenhouse gases. With dynamic cleave, the ATSC system can adapt the signal timing settings in real-time according to seasonal and short-term variations in traffic demand, enhancing the effectiveness of traffic operations on urban road networks. This paper provides a comprehensive study on the insights, technical lineaments, and status of various research work in ATSC. In this paper, the ATSC is categorized based on several road intersections (RIs), viz., single-intersection (SI) and multiple-intersection (MI) techniques, viz., Fuzzy Logic (FL), Metaheuristic (MH), Dynamic Programming (DP), Reinforcement Learning (RL), Deep Reinforcement Learning (DRL), and hybrids used for developing Traffic Signal Control (TSC) systems. The findings from this review demonstrate that modern ATSC systems designed using various techniques offer substantial improvements in managing the dynamic density of the traffic flow. There is still a lot of scope to research by increasing the number of RIs while designing the ATSC system to suit real-life applications.