The literature data on the role of synaptic mitochondria in the regulation of the cytosolic calcium level are contradictory. In the present paper calcium storage by mitochondria in rat brain synaptosomes using the fluorescent dye Rhod-2 has been investigated. The addition of 60 mM KCl increases Rhod-2 fluorescence. This effect is completely abolished by replacing K+ with Na+ or withdrawing Ca2+ from the incubation medium. A proton ionophore, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone, and a mixture of rotenone/oligomycin mitochondrial toxins cause a two-fold decrease in Rhod-2 fluorescence. Thapsigargin, an inhibitor of endoplasmic reticulum ATPase (1 μM), but not bafilomycin, an inhibitor of ATPase in synaptic vesicles (500 nM) also leads to a mitochondrial calcium influx. The addition of calcium to synaptosomes with the retained plasma membrane potential increased Rhod-2 fluorescence; however, this effect is insensitive to carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone. We have shown that mitochondria can serve as a calcium store in synaptosomes only in the case of a high cytosolic concentration of calcium.
Read full abstract