It is known that the classical theorems of Grodal [Grodal, B., 1972. A second remark on the core of an atomless economy. Econometrica 40, 581–583] and Schmeidler [Schmeidler, D., 1972. A remark on the core of an atomless economy. Econometrica 40, 579–580] on the veto power of small coalitions in finite dimensional, atomless economies can be extended (with some minor modifications) to include the case of countably many commodities. This paper presents a further extension of these results to include the case of uncountably many commodities. We also extend Vind’s [Vind, K., 1972. A third remark on the core of an atomless economy. Econometrica 40, 585–586] classical theorem on the veto power of big coalitions in finite dimensional, atomless economies to include the case of an arbitrary number of commodities. In another result, we show that in the coalitional economy defined by an atomless individualistic model, core–Walras equivalence holds even if the commodity space is non-separable. The above-mentioned results are also valid for a differential information economy with a finite state space. We also extend Kannai’s [Kannai, Y., 1970. Continuity properties of the core of a market. Econometrica 38, 791–815] theorem on the continuity of the core of a finite dimensional, large economy to include the case of an arbitrary number of commodities. All of our results are applications of a lemma, that we prove here, about the set of aggregate alternatives available to a coalition. Throughout the paper, the commodity space is assumed to be an ordered Banach space which has an interior point in its positive cone.