The representative spinel-type materials AB2O4 (both A and B are transition metals) electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been investigated and significant improvements have been achieved in the activity and durability for ORR and OER in the alkaline solution. But CoFeCoO4 was not explored widely like ZnCo2O4 (or NiCo2O[Formula: see text] as the ORR electrocatalyst for its relatively complicated atomic site occupation. CoFeCoO4 has a typical cubic spinel structure with Co[Formula: see text] in the tetrahedron and Co[Formula: see text] and Fe[Formula: see text] in the octahedron. A mixture of Co[Formula: see text] and Fe[Formula: see text] in the B site makes the oxide have a wider overlap between transition metal 3d orbit and O 2p orbit, which can lead to an effective charge transfer in the rate-determining steps of ORR process and then enhance the ORR activity. The high electronic conductivity and specific surface area of rGO can accelerate charger transfer and provide more catalytic sites, which would contribute to a faster ORR process. In this work, the porous spindle CoFeCoO4 microparticles which were synthesized by hydrothermal technology, were assembled on the rGO surface to obtain the CoFeCoO4/rGO composite, which exhibited enhanced ORR activity and catalytic stability comparable to that of Pt/C. On the other hand, the OER catalytic activity of the prepared samples was also studied to explore the potential of CoFeCoO4/rGO as a bifunctional oxygen catalyst.
Read full abstract