In (Riecanova and Zajac in Rep. Math. Phys. 70(2):283–290, 2012) it was shown that an effect algebra E with an ordering set $\mathcal{M}$ of states can by embedded into a Hilbert space effect algebra $\mathcal{E}(l_{2}(\mathcal{M}))$ . We consider the problem when its effect algebraic MacNeille completion $\hat{E}$ can be also embedded into the same Hilbert space effect algebra $\mathcal {E}(l_{2}(\mathcal{M}))$ . That is when the ordering set $\mathcal{M}$ of states on E can be extended to an ordering set of states on $\hat{E}$ . We give an answer for all Archimedean MV-effect algebras and Archimedean atomic lattice effect algebras.
Read full abstract