Two-dimensional materials and their heterostructures have significant potential for future developments in materials science and optoelectronics due to their unique properties. However, their fabrication and transfer process often introduce impurities and contaminants that degrade their intrinsic qualities. To address this issue, current atomic force microscopy (AFM) probe contact mode methods provide a solution by allowing in situ cleaning and real-time observation of the nanoscale cleaning process. Nevertheless, existing pyramidal probes may scratch surfaces and damage heterostructures during force application. Therefore, we proposed a method based on the nano-spherical probe contact mode to clean residual and polymer contamination for minimum damage cleaning of MoS2/hBN substrates. Comparative experiments with pyramidal probes in 2DM morphology and photoluminescence (PL) have shown that nano-spherical probes are exceptionally effective in cleaning bubbles of various sizes, compared to uncleaned MoS2, where PL full width at half maximum (FWHM) averages 0.115 eV, nano-spherical probes reduce it by 30% to 0.08 eV. Pyramidal probes, however, only clean smaller bubbles and leave residuals in larger ones, resulting in less optimal PL mapping data with values in both the 0.09 eV and 0.0115 eV regions. We also collected the standard deviation of the FWHM data points for the uncleaned region and the regions cleaned by the pyramidal and nano-spherical probes, which were 0.02773, 0.01895, and 0.00531, respectively. Notably, the standard deviation of the FWHM in the nano-spherical probe-cleaned region is only 28% of that in the pyramidal probe-cleaned region. Then, increasing the applied force leads to damage in the crystal structure, resulting in potential inconsistencies across different areas, as evidenced by KPFM and SEM observations. In contrast, nano-spherical probes demonstrate a uniform potential in KPFM and consistently maintain a smooth surface morphology in SEM throughout the process. This approach highlights the potential of nano-spherical probes to advance minimum-damage cleaning techniques in 2D material research and applications.
Read full abstract