The current study examines the impact of metal additives on the shielding characteristics of Se76Te20Sn2M2 (where M = Ge, In, Sb, and Pb). These glasses are useful as shielding materials against high-energy radiation, such as X-rays and ϒ-rays, because these glasses have better values of shielding parameters compared to other potential candidates in the race for nuclear safety applications. To this end, we have calculated various radiation-related protection parameters using an online application called Phy-X/PSD. Using this program, we have estimated a complete list of radiation shielding parameters. The impact of the fourth element M (M = Ge, In, Sb, and Pb) on these parameters is also discussed.The maximum mass attenuation coefficient (MAC) was recorded at a photon energy of 15 keV for the incorporation of lead. Half-value layer (HVL) values peaked at 6 MeV and it attained its maximum value for germanium. The highest and lowest values of the linear attenuation coefficients (LAC) were obtained for Se76Te20Sn2Pb2 and Se76Te20Sn2Ge2 alloys respectively. Notably, the Se76Te20Sn2Pb2 alloy exhibited the highest values of effective atomic number (Zeff), electron density (Neff), atomic cross-section (ACS), and electronic cross-section (ECS), indicating superior shielding performance. Conversely, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) were highest for Se76Te20Sn2Ge2 alloy. Neutron attenuation was most effective in the Se76Te20Sn2In2 and Se76Te20Sn2Pb2 compositions. Overall, the incorporation of lead in the parent glass demonstrated superior shielding capability compared to the other compositions studied.