ABSTRACTPhoto-mediated atom transfer radical polymerization (ATRP) of acrylonitrile (AN) was carried out at 25°C in N,N-dimethyl formamide (DMF) with aniline as photoinitiator. Polyacrylonitrile (PAN) with predictable average molecular weight and narrow molecular weight distribution was synthesized with 2-Bromopropionitrile (BPN) as ATRP initiator and FeCl3·6H2O/Triphenylphosphine (PPh3) as the catalyst. The obtained kinetics showed that the photoinduced Fe-mediated ATRP of AN provided a route to synthesize well defined PAN with narrow molecular weight distribution (Mw/Mn). The living character of photoinduced Fe-mediated ATRP of AN was verified by the linear increase of molecular weights with monomer conversion and the molecular weights are in good agreement with the theoretic values. In addition, the chain extension experiments were successfully conducted under the same conditions. The periodic light on-off process was investigated for the photoinduced Fe-mediated ATRP of AN. The obtained PAN was characterized by 1H nuclear magnetic resonance and gel permeation chromatography. The brominated PAN was used to perform chain-extension with AN as macroinitiator in order to verify the living nature of photoinduced ATRP of AN-Br.
Read full abstract