Dimethyl sulfoxide (DMSO), a versatile medium, is a particular component in the marine atmosphere that possibly causes polycyclic aromatic hydrocarbons (PAHs) to degrade differently than they do in the continental atmosphere. In this study, phenanthrene (Phe) was used as a model PAH in batch photochemical experiments to investigate the chemical actions of DMSO and the underlying mechanisms. The photodegradation of Phe in aqueous solutions with DMSO volume fractions from 0 % to 100 % was initiated by ultraviolet (UV) radiation and promoted by singlet oxygen, which was consistent with pseudo-first-order kinetics. Phe photodegraded faster in a mixture of DMSO and water than in water or DMSO alone, and the rate constant showed a unimodal distribution over the DMSO fraction range, peaking at 33 % DMSO (0.0333 ± 0.0009 min−1) and 40 % DMSO (0.0199 ± 0.0005 min−1) under 254 nm and 302 nm UV radiation, respectively. This interesting phenomenon was attributed to the competition of DMSO for UV radiation and singlet oxygen and changes in dissolved oxygen and free water contents caused by the interaction between DMSO and water molecules. In addition, 9,10-phenanthrenequinone (9,10-PhQ) with high cytotoxicity was the main photodegradation product of Phe under various conditions. The photodegradation rate of Phe in the mixtures of DMSO and water was comparable to its reaction rate with OH radicals, suggesting that 9,10-PhQ can be rapidly generated in the marine atmosphere, driven by a mechanism different from that in the continental or urban atmosphere. Under the presented experimental conditions, UV intensity and DMSO fraction were the primary factors that affected the photodegradation rate of Phe and 9,10-PhQ and altered their integrated toxicity. The findings of this study support the conclusion that the marine atmosphere is an essential field in the atmospheric transport of PAHs, in which DMSO is an important component that affects their photodegradation.