Alzheimer's disease and related dementias (ADRD) and Parkinson's disease (PD) are the most common neurodegenerative conditions. These central nervous system disorders impact both the structure and function of the brain and may lead to imaging changes that precede symptoms. Patients with ADRD or PD have long asymptomatic phases that exhibit significant heterogeneity. Hence, quantitative measures that can provide early disease indicators are necessary to improve patient stratification, clinical care, and clinical trial design. This work uses machine learning techniques to derive such a quantitative marker from T1-weighted (T1w) brain Magnetic resonance imaging (MRI). In this retrospective study, we developed machine learning (ML) based disease-specific scores based on T1w brain MRI utilizing Parkinson's Disease Progression Marker Initiative (PPMI) and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts. We evaluated the potential of ML-based scores for early diagnosis, prognosis, and monitoring of ADRD and PD in an independent large-scale population-based longitudinal cohort, UK Biobank. 1,826 dementia images from 731 participants, 3,161 healthy control images from 925 participants from the ADNI cohort, 684 PD images from 319 participants, and 232 healthy control images from 145 participants from the PPMI cohort were used to train machine learning models. The classification performance is 0.94 [95% CI: 0.93-0.96] area under the ROC Curve (AUC) for ADRD detection and 0.63 [95% CI: 0.57-0.71] for PD detection using 790 extracted structural brain features. The most predictive regions include the hippocampus and temporal brain regions in ADRD and the substantia nigra in PD. The normalized ML model's probabilistic output (ADRD and PD imaging scores) was evaluated on 42,835 participants with imaging data from the UK Biobank. There are 66 cases for ADRD and 40 PD cases whose T1 brain MRI is available during pre-diagnostic phases. For diagnosis occurrence events within 5 years, the integrated survival model achieves a time-dependent AUC of 0.86 [95% CI: 0.80-0.92] for dementia and 0.89 [95% CI: 0.85-0.94] for PD. ADRD imaging score is strongly associated with dementia-free survival (hazard ratio (HR) 1.76 [95% CI: 1.50-2.05] per S.D. of imaging score), and PD imaging score shows association with PD-free survival (hazard ratio 2.33 [95% CI: 1.55-3.50]) in our integrated model. HR and prevalence increased stepwise over imaging score quartiles for PD, demonstrating heterogeneity. As a proxy for diagnosis, we validated AD/PD polygenic risk scores of 42,835 subjects against the imaging scores, showing a highly significant association after adjusting for covariates. In both the PPMI and ADNI cohorts, the scores are associated with clinical assessments, including the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog), and pathological markers, which include amyloid and tau. Finally, imaging scores are associated with polygenic risk scores for multiple diseases. Our results suggest that we can use imaging scores to assess the genetic architecture of such disorders in the future. Our study demonstrates the use of quantitative markers generated using machine learning techniques for ADRD and PD. We show that disease probability scores obtained from brain structural features are useful for early detection, prognosis prediction, and monitoring disease progression. To facilitate community engagement and external tests of model utility, an interactive app to explore summary level data from this study and dive into external data can be found here https://ndds-brainimaging-ml.streamlit.app. As far as we know, this is the first publicly available cloud-based MRI prediction application. US National Institute on Aging, and US National Institutes of Health.
Read full abstract