Due to their high optical transparency and electrical conductivity, indium tin oxide thin films are a promising material for photonic circuit design and applications. However, their weak optical nonlinearity has been a substantial barrier to nonlinear signal processing applications. In this study, we show that an atomically thin (~1.5 nm) indium tin oxide film in the form of an air/indium tin oxide/SiO2 quantum well exhibits a second-order susceptibility χ2 of ~1,800 pm V-1. First-principles calculations and quantum electrostatic modelling point to an electronic interband transition resonance in the asymmetric potential energy of the quantum well as the reason for this large χ2 value. As the χ2 value is more than 20 times higher than that of the traditional nonlinear LiNbO3 crystal, our indium tin oxide quantum well design can be an important step towards nonlinear photonic circuit applications.
Read full abstract