The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused N-heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities. This catalytic system is also effective for the asymmetric carbocycle hydrogenation of fused heteroarenes bearing a boryl or amino group. Experimental studies provided a strong support for the homogeneous nature of the catalysis, and an inner-sphere mechanism was proposed for the hydrogenation. DFT calculations indicated that the hydrogenation is initiated by η4-coordinative activation of quinoline carbocycle to Ru dihydride complex of SKP, followed by metal-to-ligand hydride transfer. Subsequent carbocycle reduction proceeds via consecutive steps of the H2 oxidative addition and C-H reductive elimination.
Read full abstract