Aluminium (Al3+) toxicity restricts productivity and profitability of wheat (Triticum aestivum L.) crops grown on acid soils worldwide. Continued gains will be obtained by identifying superior alleles and novel Al3+ resistance loci that can be incorporated into breeding programs. We used association mapping to identify genomic regions associated with Al3+ resistance using 1055 accessions of common wheat from different geographic regions of the world and 178 polymorphic diversity arrays technology (DArT) markers. Bayesian analyses based on genetic distance matrices classified these accessions into 12 subgroups. Genome-wide association analyses detected markers that were significantly associated with Al3+ resistance on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5B, 6A, 6B, 7A, and 7B. Some of these genomic regions correspond to previously identified loci for Al3+ resistance, whereas others appear to be novel. Among the markers targeting TaALMT1 (the major Al3+-resistance gene located on chromosome 4D), those that detected alleles in the promoter explained most of the phenotypic variance for Al3+ resistance, which is consistent with this region controlling the level of TaALMT1 expression. These results demonstrate that genome-wide association mapping cannot only confirm known Al3+-resistance loci, such as those on chromosomes 4D and 4B, but they also highlight the utility of this technique in identifying novel resistance loci.