Annual hybridization is taking place between representatives of the parthenogenetic lizard Cnemidophorus tesselatus (2n = 46, 47) and males of the bisexual species C. tigris marmoratus (2n = 46) in desert grassland habitats at Arroyo del Macho, Chaves County, New Mexico. This raises the question of whether a new triploid parthenogenetic species may be originating as a consequence of this activity. Hybrids were collected in each of four years (1996–1999), and 20 of 21 hybrids collected (12 males and 8 females) were available for study. Although a triploid parthenogenetic species (Cnemidophorus exsanguis 3n = 69) and a diploid bisexual species (C. inornatus 2n = 46) were also found at the hybridization site, the genealogy of the hybrids was determined unequivocally with karyotypic and electrophoretic evidence (34 loci tested). The specimens examined electrophoretically included an adult female and one of her laboratory-reared daughters, which demonstrated for the first time clonal inheritance in C. tesselatus pattern class E.The population of C. tesselatus at Arroyo del Macho is characterized by two karyotypic cytotypes. The ancestral one (2n = 46) occurs at about half the frequency of the derived cytotype (2n = 47), which apparently was produced by centric fission of the ancestral X-chromosome from C. tigris In contrast, the occurrence of the two cytotypes was reversed and strongly asymmetrical in the hybrids; only one of nine hybrids possessed the fissioned X-chromosome. This individual was significantly different in 12 meristic characters from the sample of hybrids with intact X-chromosomes. Predictably, principal components scores for this individual fell outside the 95% confidence ellipse of scores of the other eight hybrids that were karyotyped. The skewed ratio and multiple phenotypic differences suggest that hybrids inheriting a fissioned X-chromosome might be at a selective disadvantage compared to hybrids with intact X-chromosomes.All 20 hybrids closely resemble C. tesselatus in most color pattern features. However, these hybrids, like C. tigris marmoratus lack lateral stripes. Because the population of C. tesselatus at Arroyo del Macho has lateral stripes (or their remnants), hybrids can be readily distinguished from C. tesselatus by this color pattern feature. Compared to the two parental species, hybrids had a significantly lower mean number of scales around midbody, but hybrids resembled either C. tesselatus or C. tigris marmoratus in other univariate meristic characters. This mosaic pattern of resemblance was simplified to a three-dimensional depiction of variation using principal components analysis. Each of two principal components expressed the resemblance of hybrids to one of the two parental species. A third component reflected the difference between hybrids and both parental species. A canonical variate analysis of meristic characters demonstrated the multivariate distinctiveness of each group—hybrids, C. tesselatus and C. tigris marmoratus However, based on Mahalanobis D2 distances, the closest morphological resemblance among hybrids and parental species was between hybrids and the maternal species, C. tesselatusNine additional museum specimens, suspected of being C. tesselatus × C. tigris marmoratus hybrids, were identified, as such, by a canonical variate analysis using our samples of C. tesselatus, C. tigris marmoratus and hybrids from Arroyo del Macho as a priori groups. These nine individuals document hybridizations between C. tesselatus and C. tigris marmoratus at two additional localities in Chaves County, New Mexico, two localities in Sierra County, New Mexico, and a cluster of sites near Presidio, Presidio County, Texas. Previously, several of these hybrids had been misidentified as male C. tesselatusThe reproductive systems of female and male hybrids were compared histologically to those of C. tesselatus and C. tigris marmoratus respectively. Sexually mature and reproductive adults of C. tesselatu