Rational design and precise synthesis of biogenic noble-metal-based catalysts possessing distinctive structure and composition play a crucial role in the chemical industry, enabling sustainable construction of an inclusive range of chemical resources. In this study, we have effectively fabricated Pd@A-CQDs through a straightforward one-pot aqueous protocol assisted by visible light employing renewable biomass-derived amine-rich carbon quantum dots (A-CQDs). The remarkable visible light harnessing capability (bandgap, ca. 2.81 eV), high density (35.7 × 1018 cm-3), and long lifetime (25 ps) of photocharge carriers and amine-rich surface in A-CQDs make them ideal candidates as both reducing and stabilizing agents, thereby facilitating the in situ construction of metallic Pd(0) nanoparticles. Comprehensive physicochemical characterizations have provided compelling evidence for the spherical morphology of Pd@A-CQDs core-shell nanostructures, with ultrathin A-CQDs shells of ca. 1.9 nm and an average diameter of 14 ± 1 nm. The effectiveness of the synthesized Pd@A-CQDs catalysts was assessed in the ligand- and base-free homocoupling reaction of arylboronic acids in water at ambient temperature. The catalytic tests demonstrated the selective production of the homocoupled compound over protodeboronation products with excellent yield and high catalyst recyclability under ambient conditions. The protocol employed exhibited a high TOF (1.05 × 10-2 mol g-1 min-1) and a low E-factor, with a remarkably low palladium loading. XPS analysis confirmed the retention of the metallic nature of the palladium core within the catalysts during the reaction. The catalytic function of the palladium core in conjunction with the A-CQDs shell, along with the promotional effects provided by water and oxygen for the formation of nucleophilic tetravalent boron, was conclusively recognized by 11B NMR and O2-TPD measurements. The obtained experimental results deliver valuable insights into the probable reaction pathway for the homocoupling reaction catalyzed by the Pd@A-CQDs catalysts. Through a comprehensive and sustainable evaluation, the current methodology exhibits superior performance compared to previously documented techniques in relation to estimated circularity and adherence to good manufacturing practices (GMP).