ABSTRACTThe nonlocal general particle dynamics (NGPD) has been successfully developed to model crack propagation and large deformation problems. In this paper, the semi‐Lagrangian nonlocal general particle dynamics (SL‐NGPD) is proposed to solve brittle failure in rock slopes. In SL‐NGPD, the interaction between particles due to deformation is calculated in the initial configuration, while the friction contact interaction from discontinuities is calculated in the current configuration. The Van der Waals force model is utilized for friction contact. The bond‐level energy‐based failure criterion is developed to predict tensile/compressive‐shear mix‐mode cracks. The artificial viscosity and damage correction are used to enhance the numerical stability and accuracy when modeling brittle failure. The SL‐NGPD paradigm is numerically implemented through adaptive dynamic relaxation and predictor–corrector schemes for stable numerical solutions. The stability and accuracy of SL‐NGPD are verified by simulating compression tests. Thereafter, the crack coalescence patterns of double‐flaw specimens are investigated to understand the triggering failure mechanism of jointed rock slopes. Finally, the progressive failure process of the rock slope with step‐path joints is simulated to demonstrate its validity and robustness in modeling brittle failure in rockslides. The numerical results illustrate that the proposed SL‐NGPD is promising and performant for analyzing brittle failure problems in geotechnical engineering.