Identifying sustainable artificial recharge zones in arid cratons is challenging due to complex geology and limited natural recharge conditions, making accurate site selection and management difficult. This study integrates Vertical Electrical Sounding (VES), the Analytic Hierarchy Process (AHP), and Boolean analysis to identify sustainable artificial recharge zones in the arid Bundelkhand craton of India. Aquifer thickness and fractures emerged as critical determinants of groundwater recharge conditions, revealing varying degrees of suitability for recharge across the study area. Approximately 2.31% (13.36 km2) of the area along streams exhibited "very high" suitability, while 8.09% (45.82 km2) had "high" suitability. “Moderate" suitability covered 17.86% (101.66 km2), "low" suitability accounted for 38.85% (218.39 km2), and "very low" suitability represented 17.35% (98.75 km2) of the area. Recharge potential was highest in the northeast and central parts, with the middle of the watershed exhibiting the lowest potential. The study demonstrated that this integrated approach significantly improved precision from 71.40% to 85.70% and enhanced the F1 score from 0.833 to 0.923, surpassing the performance of the AHP method alone. The findings highlighted the importance of strategic selection and targeting of specific locations for artificial recharge, as only ∼18% of the study area was suitable for such efforts, despite ∼43% showing potential for groundwater. AHP with VES proves more precise and reliable than Fuzzy-AHP with VES, with AHP's conservative approach classifying 55.70% of the area as very low to low suitability compared to Fuzzy-AHP's 41.92%, ensuring only the most suitable sites are selected. VES offers cost-effectiveness, noninvasiveness, and rapid generation of a 1D subsurface model, balancing its lower detail compared to Electrical Resistivity Tomography. When combined with the AHP, VES enhances adaptability to changing conditions, emphasizing ecological preservation and climate change resilience. This approach effectively addresses water challenges in arid regions, contributing to sustainable water resource management.