Imbalanced datasets present a challenging problem in machine learning and artificial intelligence. Since most models typically assume balanced data distributions, imbalanced positive and negative examples can lead to significant bias in prediction or classification tasks. Current over-sampling methods frequently encounter issues like overfitting and boundary bias. A novel imbalanced data augmentation technique called SVM-GA over-sampling (SGO) is proposed in this paper, which integrates Support Vector Machines (SVM) with Genetic Algorithms (GA). Our approach leverages SVM to identify the decision boundary and uses GA to generate new minority samples along this boundary, effectively addressing both over-fitting and boundary biases. It has been experimentally validated that SGO outperforms the traditional methods on most datasets, providing a novel and effective approach to address imbalanced data problems, with potential application prospects and generalization value.
Read full abstract