The biocide Bacillus thuringiensis israelensis (Bti) has become the most commonly used larvicide to control mosquitoes in seasonal wetlands. Although Bti is considered non-toxic to most aquatic organisms, the non-biting chironomids show high susceptibilities towards Bti. As chironomids are a key element in wetland food webs, major declines in their abundance could lead to indirect effects that may be passed through aquatic and terrestrial food chains. We conducted two mesocosm experiments to address this hypothesis by assessing direct and indirect effects of Bti-modified availability of macroinvertebrate and zooplankton food resources on the predatory larvae of palmate and smooth newts (Urodelans: Lissotriton helveticus, Lissotriton vulgaris). We examined newt survival rates and dietary composition by means of stable isotope (δ15N and δ13C) analysis in the presence of Bti treatment and a predator (Odonata: Aeshna cyanea). We assessed palmate newts' body size at and time to metamorphosis while developing in Bti treated mesocosms. Chironomid larvae were the most severely affected aquatic invertebrates in all Bti treated food chains and experienced abundance reductions by 50 to 87%. Moreover, stable isotope analysis revealed that chironomids were preferred over other invertebrates and comprised the major part in newts' diet (56%) regardless of their availability. The dragonfly A. cyanea decreased survival of newt larvae by 27% in Bti treated mesocosms showing affected chironomid abundances. Increasing intraguild predation is most likely favored by the Bti-induced reduction of alternative prey such as chironomid larvae. The decreased food availability after Bti treatment led to slightly smaller L. helveticus metamorphs while their developmental time was not affected. Our findings highlight the crucial role of chironomids in the food webs of freshwater ecosystems. We are also emphasizing the importance of reconsidering human-induced indirect effects of mosquito control on valuable wetland ecosystems particularly in the context of worldwide amphibian and insect declines.
Read full abstract