Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumour induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette (ABC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the GSH conjugate of the highly toxic monomethylarsonous acid (MMAIII), MMA(GS)2, and the major human urinary arsenic metabolite dimethylarsinic acid (DMAV). Our objective was to determine if mouse Abcc4 (mAbcc4) protected against and/or transported the same arsenic species as hABCC4. The anti-ABCC4 antibody M4I-10 epitope was first mapped to an octapeptide (411HVQDFTA418F) present in both hABCC4 and mAbcc4, enabling quantification of relative amounts of hABCC4/mAbcc4. mAbcc4 expressed in HEK293 cells did not protect against any of the six arsenic species tested [arsenite, arsenate, MMAIII, monomethylarsonic acid, dimethylarsinous acid or DMAV], despite displaying remarkable resistance against the antimetabolite 6-mercaptopurine (>9-fold higher than hABCC4). Furthermore, mAbcc4-enriched membrane vesicles prepared from transfected HEK293 cells did not transport MMA(GS)2 or DMAV, despite a >3-fold higher transport activity than hABCC4-enriched vesicles for the prototypic substrate 17β-estradiol-17-(β-D-glucuronide). Abcc4(+/+) mouse embryonic fibroblasts (MEFs) were ~3-fold more resistant to arsenate than Abcc4(-/-) MEFs; however, further characterization indicated this was not mAbcc4 mediated. Thus, under the conditions tested, arsenicals are not transported by mAbcc4, and differences between the substrate selectivity of hABCC4 and mAbcc4 seem likely to contribute to differences in human and mouse arsenic toxicokinetics. Significance Statement Toxicokinetics of the carcinogen arsenic differ among animal species. Arsenic methylation is known to contribute to this, whereas arsenic transporters have not been considered. The human ATP-binding cassette transporter hABCC4 is a high affinity transporter of toxicologically important arsenic metabolites. Here we used multiple cell models to demonstrate that mouse Abcc4 does not protect cells against, or transport, any arsenic species tested. Thus, differences between hABCC4 and mAbcc4 substrate selectivity likely contribute to differences in human and mouse arsenic toxicokinetics.