The living radical polymerization of methyl methacrylate initiated from aromatic sulfonyl chlorides and catalyzed by the new catalytic systems CuSBu/bpy CuSPh/bpy and CuCCPh/bpy (bpy = 2,2′-bipyridine) is described. For a target degree of polymerization of 200, lowering the ratio of catalyst to sulfonyl chloride group from 1/1 to 0.25/1 mol/mol decreases the values of the experimental rate constant of polymerization from 5.12 × 10−2, 2.4 × 10−2, and 1.87 × 10−2 min−1 to 1.8 × 10−3, 4.9 × 10−3, and 4.2 × 10−3 min−1 for CuSBu, CuSPh, and CuCCPh, respectively, whereas the corresponding initiator efficiency increases from 62 to 99%. The external orders of reaction in the catalyst are 0.79 for CuSPh, 0.88 for CuCCPh, and 1.64 for CuSBu. A mechanistic interpretation that involves the in situ generation of, most likely, the real catalyst CuCl, starting from combinations of CuSBu, CuSPh, and CuCCPh and sulfonyl chloride or alkyl halide growing species, is suggested. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4353–4361, 2000
Read full abstract