ConspectusUnderstanding and harnessing the properties of nanoscale molecular entities are considered as new frontiers in basic chemistry. In this regard, synthetic nanographene with atomic precision has attracted much attention recently. For instance, taking advantage of the marvelous bonding capability of carbon, flat, curved, ribbon-type, or cone-shaped nanographenes have been prepared in highly controllable and elegant manner, allowing one to explore fascinating molecular architectures with intriguing optical, electrochemical, and magnetic characteristics. This stands in stark contrast to other carbon-rich nanomaterials, such as graphite oxides or carbon quantum dots, which preclude thorough investigations because of complicate structural defects. Undoubtedly, synthetic nanographene contributes strongly to modern aromatic chemistry and represents a vibrant field that may deliver transforming functional materials crucial for optoelectronics, nanotechnologies, and biomedicine.Nonetheless, in many cases, synthesis and characterization of nanographene compounds are highly demanding. Low solubility, high molecular strain, undesired selectivity, as well as incomplete or excessive C-C bond formation are common impediments, that require formidable efforts to control the molecular geometry, to modulate the edge structure, to achieve accurate doping, or to push the upper size boundary. These endeavors are indispensable for establishing structure-property relationships, and lay down foundation for exploring synthetic nanographenes at a high level of sophistications.In this Account, we summarize our contributions to this field by presenting a series of helical synthetic nanographenes, such as hexapole [7]helicene (H7H), nitrogen-doped H7H, hexapole [9]helicene (H9H), superhelicene, and supertwistacene. This kind of giant synthetic nanographene reaches the size domain of carbon quantum dots, albeit has precise atomic structure. It provides a unique platform to study aromatic chemistry and chirality at the nanoscale. We discuss synthetic methods and point out, in particular, the strengths and pitfalls of Scholl oxidation, which are expected to be valuable for making synthetic nanographenes in general. In addition, we illustrate their exciting electrochemical and photophysical performance, which include, but are not limited to, reversible multielectron redox chemistry, record high panchromatic absorption, impressive photothermal behavior, and extremely strong Cotton effect. These unusual characteristics are convincingly traced back to their three-dimensional conjugated architectures, highlighting the critical roles of π-electron delocalization, heteroatom-doping, substitution, and molecular symmetry in determining nanographenes' properties and functions. Lastly, we put forward our understanding on the challenges and opportunities that lies ahead and hope this Account will inspire ever more ambitious achievements from this attractive area of research.
Read full abstract