Lipids are vital precursors to beef aroma compounds, but the exact lipid molecules influencing aroma generation remain unconfirmed. This study employs gas chromatography–olfactometry–mass spectrometry and absolute quantitative lipidomics to identify beef's aroma and lipid profiles and to examine lipid alterations post-thermal processing. The aim is to understand the role of lipids in aroma generation during beef's raw-to-cooked transition. Eighteen key aroma compounds were identified as significant contributors to the aroma of beef. 265 lipid molecules were quantified accurately, and we found that triglycerides containing C18:1 or C18:2 chains, such as TG(16:0_18:1_18:1), TG(16:0_18:1_18:2), TG(16:0_16:1_18:1), as well as phosphatidylcholine and phosphatidylethanolamine containing PC(16:1e_20:4), PC(16:0e_20:4), PC(18:2e_18:2), and PE(16:1e_20:4), played important roles in the generation of key aroma compounds in beef. C18:1, C18:2, C18:3, and C20:4 were key substrates for the formation of aroma compounds. In addition, lysophosphatidylcholine and lysophosphatidylethanolamine containing unsaturated fatty acid chains may serve as important aroma retainers.
Read full abstract