We present the best possible parametersα1,β1,α2,β2∈Randα3,β3∈(1/2,1)such that the double inequalitiesQα1(a,b)A1-α1(a,b)<AG[A(a,b),Q(a,b)]<Qβ1(a,b)A1-β1(a,b),α2Q(a,b)+(1-α2)A(a,b)<AG[A(a,b),Q(a,b)]<β2Q(a,b)+(1-β2)A(a,b),Q[α3a+(1-α3)b,α3b+(1-α3)a]<AG[A(a,b),Q(a,b)]<Q[β3a+(1-β3)b,β3b+(1-β3)a]hold for alla,b>0witha≠b, whereA(a,b),Q(a,b), andAG(a,b)are the arithmetic, quadratic, and Gauss arithmetic-geometric means ofaandb, respectively. As applications, we find several new bounds for the complete elliptic integrals of the first and second kind.
Read full abstract