The tabulation of normal subgroups of 3D crystallographic space groups that are themselves 3D crystallographic space groups (csg's) is an ambitious goal, but would have a variety of applications. For convenience, such subgroups are referred to as `csg-normal' while normal subgroups of the crystallographic point group (cpg) of a crystallographic space group are referred to as `cpg-normal'. The point group of a csg-normal subgroup must be a cpg-normal subgroup. The present work takes a significant step towards that goal by tabulating the translational subgroups (a.k.a. sublattices) that are capable of supporting csg-normal subgroups. Two necessary conditions are identified on the relative sublattice basis that must be met in order for the sublattice to support csg-normal subgroups: one depends on the operations of the point group of the space group, while the other depends on the operations of the cpg-normal subgroup. Sublattices that meet these conditions are referred to as `normally supportive'. For each cpg-normal subgroup (excluding the identity subgroup 1) of each of the arithmetic crystal classes of 3D space groups, all of the normally supportive sublattices have been tabulated in symbolic form, such that most of the entries in the table contain one or more integer variables of infinite range; thus it could be more accurately described as a table of the infinite families of normally supportive sublattices. For a given pair of cpg-normal subgroup and normally supportive sublattice, csg-normal subgroups of the space groups of the parent arithmetic crystal class can be constructed via group extension, though in general such a pair does not guarantee the existence of a corresponding csg-normal subgroup.