Convolutional neural networks (CNNs) are indeed commonly employed for hyperspectral image classification. However, the architecture of cellular neural networks typically requires manual design and fine-tuning, which can be quite laborious. Fortunately, there have been recent advancements in the field of Neural Architecture Search (NAS) that enable the automatic design of networks. These NAS techniques have significantly improved the accuracy of HSI classification, pushing it to new levels. This article proposes a Multi-Scale Spatial–Spectral Attention-based NAS, MS3ANAS) framework for HSI classification to automatically design a neural network structure for HSI classifiers. First, this paper constructs a multi-scale attention mechanism extended search space, which considers multi-scale filters to reduce parameters while maintaining large-scale receptive field and enhanced multi-scale spectral–spatial feature extraction to increase network sensitivity towards hyperspectral information. Then, we combined the slow–fast learning architecture update paradigm to optimize and iteratively update the architecture vector and effectively improve the model’s generalization ability. Finally, we introduced the Lion optimizer to track only momentum and use symbol operations to calculate updates, thereby reducing memory overhead and effectively reducing training time. The proposed NAS method demonstrates impressive classification performance and effectively improves accuracy across three HSI datasets (University of Pavia, Xuzhou, and WHU-Hi-Hanchuan).
Read full abstract