This study investigates the production of biomethane, and variation in microbial community and coal molecular structures using gas chromatography, 16S rRNA high-throughput sequencing and Fourier transform infrared spectroscopy. Additionally, the factors influencing microbial community structure at a molecular level are discussed. The results demonstrate that bituminous coal exhibits a higher biomethane yield than anthracite coal. In bituminous coal samples, Escherichia and Proteiniphilum are the predominant bacteria at day 0, while Macellibacteroides dominates from days 5 to 35. Methanofollis is the dominated archaea during days 0 to 15, followed by Methanosarcina on day 35. In anthracite coal samples, Soehngenia is the dominant bacterial genus at day 0; however, it transitions to mainly Soehngenia and Aminobacterium within days 5-15 before evolving into Acetomicrobium on day 35. Methanocorpusculum is predominantly found in archaeal communities during days 0-15 but shifts to Methanosarcina on day 35. Alpha diversity analysis reveals that bacterial communities have higher species abundance and diversity compared to archaeal communities. Redundancy analysis indicates a significant correlation between coal molecular structure and bacterial community composition (P value < 0.05), whereas no correlation exists with archaeal community composition (P value > 0.05). The research findings provide theoretical support for revealing the biological gasification mechanisms of coal.
Read full abstract