The pile-cap-beam-supported (PCBS) system can strength the soil arching effect of embankment, increase the lateral stiffness, bending resistance and vertical bearing capacity of the rigid pile, however there is no frictional soil arch model of PCBS embankment. In this paper, first a frictional arch model for PCBS embankment modified from Russell’s frictional arching model was proposed. The proposed model in this paper considers the algorithm of lateral pressure coefficient k and a changing critical height of soil arch. In this new method, the influence of pile spacing, filling properties, height and pile spacing on critical height soil arch was comprehensively considered. Second, a series of numerical cases were performed to verify the effectiveness of the proposed model and study the arching effect of PCBS embankment. By comparing the vertical stress and settlement between the theoretical and simulation results, the rationality of the proposed method to estimate the stress and critical height of arch was validated. The effectiveness of the proposed method was further validated by comparing loading efficacy to a reported case. Last, the stress and deformation of PCBS and pile-cap-supported (PCS) embankment were analyzed and the superiority of PCBS system in improving the performance of embankment was observed finally.