In this study, an equivalent-input-disturbance (EID) method with a dynamic state observer and a state decomposition technique (SDT) are used to explore the disturbance rejection of a class of linear switched singular systems. The EID approach defines an EID signal, is defined for the control input channel and has the same impact on the system as exogenous disturbances. Additionally, it employs an observer to estimate the EID and achieves good disturbance-rejection performance. However, in the EID method, the coefficient matrix of the observer needs to be consistent with the coefficient matrix of the original system, which limits the application of the method. So, a dynamic state observer is designed to reconstruct the system state and estimate the disturbance in this study. Based on the state feedback control strategy, a disturbance-rejection control law containing disturbance information is designed and a closed-loop control system structure is established. Subsequently, the state equation of the closed-loop system is reorganized and decomposed into an algebraic equation and a differential equation using the SDT. Then, a Lyapunov function with few decision variables is designed to obtain an admissible criterion for the closed-loop system and the controller gains under arbitrary switching signals. Finally, the effectiveness of the presented method is verified via numerical simulations.
Read full abstract