Controlled operations are fundamental building blocks of quantum algorithms. Decomposing n-control-NOT gates (Cn(X)) into arbitrary single-qubit and CNOT gates, is a crucial but non-trivial task. This study introduces Cn(X) circuits outperforming previous methods in the asymptotic and non-asymptotic regimes. Three distinct decompositions are presented: an exact one using one borrowed ancilla with a circuit depth Θ(log(n)3)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Theta (\\log {(n)}^{3})$$\\end{document}, an approximating one without ancilla qubits with a circuit depth O(log(n)3log(1/ϵ))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{{{{{{\\mathcal{O}}}}}}}}(\\log {(n)}^{3}\\log (1/\\epsilon ))$$\\end{document} and an exact one with an adjustable-depth circuit which decreases with the number m≤n of ancilla qubits available as O(log(n/⌊m/2⌋)3+log(⌊m/2⌋))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{{{{{{\\mathcal{O}}}}}}}}(\\log {(n/\\lfloor m/2\\rfloor )}^{3}+\\log (\\lfloor m/2\\rfloor ))$$\\end{document}. The resulting exponential speedup is likely to have a substantial impact on fault-tolerant quantum computing by improving the complexities of countless quantum algorithms with applications ranging from quantum chemistry to physics, finance and quantum machine learning.
Read full abstract