Efficient extraction and recycling of rare earth elements (REEs) from low-concentration complex tailing wastewater is critical to meeting the growing industrial demands and optimizing resource utilization. In this work, three phosphorylated porous phenolic resins (PO-PPRs) were prepared via the phosphorylation of phenolic hydroxyl groups with POCl3, and employed to extract REE3+ from both simulated and practical low-concentration REE3+-containing aqueous solution. The PO-PPRs, characterized by hierarchical pore structures, exhibit high adsorption capacities for both light and heavy REE3+ ions over a broad pH working range from 3.0 to 7.0, along with fast adsorption kinetics (<30 min). And the maximum adsorption capacities of PO-PPRs for Nd3+, Dy3+ and Y3+ were found to be 104.1, 118.0 and 63.9 mg/g, respectively. Furthermore, the introduction of phosphonic groups significantly improves the REE3+ adsorption selectivity against various interfering metal ions such as Na+, K+, Ca2+, Mg2+, and Al3+. For instance, the Nd3+/Al3+ separation factor (S.F.) of 24 exceeded that of most commercial resins and reported materials. In a simulated mixed multi-element aqueous solution system containing Nd3+, Dy3+, Y3+, Al3+, Ca2+, Mg2+, Mn2+, K+ and Na+, PO-PPR-1 extracted 82.5% of total REE3+ while maintaining Al3+ adsorption efficiency of less than 13%. Moreover, the extraction efficiency of total REE3+ for PO-PPR-1 in pretreated practical wastewater from ion-adsorbed ores tailing reached 99.6%. Additionally, PO-PPRs demonstrated easy regeneration and excellent recycling performance after 5 consecutive adsorption–desorption cycles, confirming their promising application potential in low-concentration REEs extraction.
Read full abstract