With the advancement of deep learning (DL) methods in chemistry and materials science, the interpretability of DL models has become a critical issue in elucidating quantitative (molecular) structure-property relationships. Although attention mechanisms have been generally employed to explain the importance of molecular substructures that contribute to molecular properties, their interpretability remains limited. In this work, we introduce a versatile segmentation method and develop an interpretable subgraph attention (ISA) network with positive and negative streams (ISA-PN) to enhance the understanding of molecular structure-property relationships. The predictive performance of the ISA models was validated using data sets for aqueous solubility, lipophilicity, and melting temperature, with a particular focus on evaluating interpretability for the aqueous solubility data set. The ISA-PN model enables the quantification of the contributions of molecular substructures through positive and negative attention scores. Comparative analyses of the ISA, ISA-PN, and GC-Net (group contribution network) models demonstrate that the ISA-PN model significantly improves interpretability while maintaining similar accuracy levels. This study highlights the efficacy of the ISA-PN model in providing meaningful insights into the contributions of molecular substructures to molecular properties, thereby enhancing the interpretability of DL models in chemical applications.
Read full abstract