Hollow yolk–shell nanoreactors are of great interest in heterogeneous catalysis owing to their improved mass transfer ability and stability. Here, we report a facile and straight route to synthesize a highly efficient and recyclable yolk–shell Co@C–N nanoreactor with controllable properties by the direct thermolysis of a hollow Zn/Co-ZIF precursor. Based on systematical optimization of the pyrolysis temperature and the shell-thickness of Zn/Co-ZIFs, we could completely anchor and stabilize uniform Co nanoparticles (NPs) in the hollow yolk, accommodated by the Co-ZIF derived N-doped carbon nanosheets. This nanosheet-assembled yolk was further confined by a permeable and robust N-doped carbon (C–N) shell to protect the Co NPs against leaching and also enabled the reaction to take place in the hollow void. Consequently, the optimal yolk–shell Co@C–N nanoreactor showed a significantly enhanced catalytic activity for the aqueous oxidation of alcohols, yielding >99% conversion under atmospheric air and base-fre...
Read full abstract