Amine functionalized silicas have frequently been investigated as potential aldol reaction catalysts. However, active site leaching due to hydrolysis cannot be avoided, limiting the long-term stability of these catalysts in aqueous aldol reactions. Therefore, novel catalysts based on an organic resin have been developed starting from a suspension polymerized poly(ethylene glycol) methacrylate (PEGMA) hydrogel with poly(ethylene glycol) dimethacrylate (PEGDMA) as cross-linker. Amine functionalization was performed by chlorination of the terminal hydroxyl groups in the resulting PEGMA resin and subsequent nucleophilic substitution with an amine precursor, i.e., ethylenediamine (EDA), N,N′-dimethylethylenediamine (DED), or methylamine (MA). The successful synthesis of the catalysts was confirmed by 13C NMR, FT-IR, and elemental CHN analysis. Performance evaluation in a batch reactor for the aqueous aldol reaction of acetone with 4-nitrobenzaldehyde resulted in a turnover frequency (TOF) of the PEGMA-EDA catalyst amounting to 6.3 ± 0.4 · 10−4 s−1, which is of the same order of magnitude as that of the corresponding state-of-the-art amine functionalized silica evaluated using hexane as solvent. The PEGMA-DED catalyst exhibited a somewhat lower TOF of 3.1 ± 0.2 · 10−4 s−1, while the PEGMA-MA catalyst did not exhibit any turnover, indicating that the secondary amine in the backbone of the active site in the PEGMA-EDA catalyst is inactive. Continuous-flow evaluation of the PEGMA-EDA catalyst in a packed-bed reactor indicated that, as opposed to a primary amine functionalized silica catalyst, a stable catalytic activity as a function of time on stream could be achieved for at least 8 h and, hence, that no deactivation has occurred in this timeframe.
Read full abstract