In recent years, marine structures have been widely used in the world, making significant contributions to the utilization of marine resources. In the design of marine structures, there is a hybrid reliability problem arising from aleatory uncertainty and epistemic uncertainty. In many cases, epistemic uncertainty is estimated by interval parameters. Traditional methods for hybrid reliability analysis usually require a nested optimization framework, which will lead to too many calls to the limit state function (LSF) and result in poor computational efficiency. In response to this problem, this paper proposes a de-nesting hybrid reliability analysis method creatively. Firstly, it uses the p-box model to describe the epistemic uncertainty variables, and then the linear approximation (LA) model and the two-point adaptive nonlinear approximation (TANA) model are combined to approximate the upper and lower bounds of LSF with epistemic uncertainty. Based on the first-order reliability method (FORM), an iterative operation is used to obtain the interval of the non-probability hybrid reliability index. The traditional nested optimization structure is effectively eliminated by the above approximation method, which efficiently reduces the times of LSF calls and increases the calculation speed while preserving sufficient accuracy. Finally, one numerical example and two engineering examples are provided to show the greater effectiveness of this method than the traditional nested optimization method.
Read full abstract