Previous article Next article Maximization of Signal-to-Noise Ratio in an Optical FilterJames E. FalkJames E. Falkhttps://doi.org/10.1137/0117055PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] E. M. L. Beale, On quadratic programming, Naval Res. Logist. Quart., 6 (1959), 227–243 MR0113722 CrossrefGoogle Scholar[2] G. Debreu, The continuity of multi-valued functions in economicsCowles Commission Discussion Paper, Cowles Commission. Yale University, New Haven, Connecticut, 1953 Google Scholar[3] W. Dinkelbach, Die Maximierung eines Quotienten zweier linearen Funktionen unter linearen Nebenbedingungen, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 1 (1962), 141–145 10.1007/BF01844416 MR0198967 0124.36402 CrossrefGoogle Scholar[4] J. F. Falk, Masters Thesis, A modified Lagrangian approach to nonlinear programming, Doctoral thesis, University of Michigan, Ann Arbor, 1965 Google Scholar[5] H. S. Houthakker, The capacity method of quadratic programming, Econometrica, 28 (1960), 62–87 MR0113723 0089.16001 CrossrefISIGoogle Scholar[6] Samuel Karlin, Mathematical methods and theory in games, programming and economics. Vol. I: Matrix games, programming, and mathematical economics. Vol. II: The theory of infinite games, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1959Vol. I, x+433 pp. Vol. II, xi+386 MR0111634 Google Scholar[7] R. Legault, Optical spectral filtering, to appear Google Scholar[8] D. J. Wilds, Optimum Seeking Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1964 Google Scholar[9] Philip Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959), 382–398 MR0106783 0103.37603 CrossrefISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Sufficient optimality condition and duality of nondifferentiable minimax ratio constraint problems under ( p , r )- ρ -( η , θ )-invexityControl and Cybernetics, Vol. 51, No. 1 | 12 August 2022 Cross Ref Augmented Lagrangian dual for nonconvex minimax fractional programs and proximal bundle algorithms for its resolutionJournal of Industrial and Management Optimization, Vol. 0, No. 0 | 1 Jan 2022 Cross Ref Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programsJournal of Global Optimization, Vol. 74, No. 2 | 11 March 2019 Cross Ref Duality Results and Dual Bundle Methods Based on the Dual Method of Centers for Minimax Fractional ProgramsKarima Boufi and Ahmed RoubiSIAM Journal on Optimization, Vol. 29, No. 2 | 4 June 2019AbstractPDF (468 KB)Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional ProgramsJournal of Optimization Theory and Applications, Vol. 179, No. 1 | 10 July 2018 Cross Ref A nonlinear fractional programming approach for environmental–economic power dispatchInternational Journal of Electrical Power & Energy Systems, Vol. 78 | 1 Jun 2016 Cross Ref Bilevel fractional programming; Farkas lemma; Farkas lemma: Generalizations; Fractional combinatorial optimization; Quadratic fractional programming: Dinkelbach methodBilevel fractional programming; Fractional combinatorial optimization; Quadratic fractional programming: Dinkelbach methodFRACTIONAL PROGRAMMINGEncyclopedia of Optimization | 1 Jan 2001 Cross Ref Fractional ProgrammingHandbook of Global Optimization | 1 Jan 1995 Cross Ref Bibliography in fractional programmingZeitschrift für Operations Research, Vol. 26, No. 1 | 1 Dec 1982 Cross Ref Linear Restoration of Incoherently Radiating ObjectsJournal of the Optical Society of America, Vol. 62, No. 3 | 1 March 1972 Cross Ref Fractional ProgrammingHandbook of Generalized Convexity and Generalized Monotonicity Cross Ref Fractional ProgrammingEncyclopedia of Optimization Cross Ref Volume 17, Issue 3| 1969SIAM Journal on Applied Mathematics495-613 History Submitted:17 May 1967Accepted:24 June 1968Published online:12 July 2006 InformationCopyright © 1969 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0117055Article page range:pp. 582-592ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics
Read full abstract