In this paper, we develop a hybrid approach to solve the viscous Burgers’ equation by combining classical boundary layer theory with modern Physics-Informed Neural Networks (PINNs). The boundary layer theory provides an approximate analytical solution to the equation, particularly in regimes where viscosity dominates. PINNs, on the other hand, offer a data-driven framework that can address complex boundary and initial conditions more flexibly. We demonstrate that PINNs capture the key dynamics of the Burgers’ equation, such as shock wave formation and the smoothing effects of viscosity, and show how the combination of these methods provides a powerful tool for solving nonlinear partial differential equations.