Traditionally, urban stormwater infrastructure systems consist of passive infrastructure that is not actively controlled in response to rainfall events. Recently, real-time control (RTC) has been considered as a means to significantly increase the capacity and lifespan of these systems. This paper introduces the target flow control systems (TFCS) approach, which can use real-time control of systems of storages to achieve the desired flow conditions at the locations of interest. The first distinctive feature of this approach is that it does not require calibration to catchment-specific data, unlike existing approaches. This means that the TFCS approach is generally applicable to different catchments and is able to respond to future changes in runoff due to land use and/or climate change. The second distinctive feature is that the approach only requires storage-level information measured in real time with the aid of low-cost pressure sensors. This means that the approach is practical and relatively easy to implement. In addition to the introduction of the novel TFCS approach, a key innovation of this study is that the approach is tested on three case studies, each with different physical configurations and stormwater management objectives. Another key innovation is that the TFCS approach is compared to five RTC approaches, including three of the best-performing advanced approaches from the literature. Comparisons of multiple RTC approaches that consider both performance and practicality across multiple case studies are rare. Results show that the TFCS approach is the only one of the five control approaches analysed that has both the best overall performance and the highest level of practicality. The outcomes highlight the potential of the TFCS approach as a practical RTC approach that is applicable to a wide range of catchments with different stormwater management objectives. By maximizing the performance of existing stormwater storages, the TFCS approach can potentially extend the lifespan of existing infrastructure and avoid costly upgrades due to increased runoff caused by land use and climate change.