This research aims to support the goals of Oman Vision 2040 by reducing the dependency on non-renewable energy resources and increasing the utilization of the national natural renewable energy resources. Selecting appropriate energy storage systems (ESSs) will play a key role in achieving this vision by enabling a greater integration of solar and other renewable energy. ESSs allow for solar power generated during daylight hours to be stored for use during peak demand periods. Additionally, the proposed framework provides guidance for large-scale ESS infrastructure planning and investments to support Oman’s renewable energy goals. As the global renewable energy market grows rapidly and Oman implements economic reforms, the ESS market is expected to flourish in Oman. In the near future, ESS is expected to contribute to lower electricity costs and enhance stability compared to traditional energy systems. While ESS technologies have been studied broadly, there is a lack of comprehensive analysis for optimal ESS selection tailored to Oman’s unique geographical, technical, and policy context. The main objective of this study is to provide a comprehensive evaluation of ESS options and identify the type(s) most suitable for integration with Oman’s national grid using a multi-criteria decision-making (MCDM) methodology. This study addresses this gap by applying the Hesitate Fuzzy Analytic Hierarchy Process (HF-AHP) and Hesitate Fuzzy VIKOR methods to assess alternative ESS technologies based on technical, economic, environmental, and social criteria specifically for Oman’s context. The analysis reveals pumped hydro energy storage (PHES) and compressed air energy storage (CAES) as the most appropriate solutions. The tailored selection framework aims to guide policy and infrastructure planning to determine investments for large-scale ESSs and provide a model for comprehensive ESS assessment in energy transition planning for countries with similar challenges.