This paper presents a theoretical study of the enhancement of Zou-Wang-Mandel (ZWM) interferometry through cavity-enhanced spontaneous parametric down-conversion (SPDC) processes producing frequency-entangled biphotons. The ZWM interferometry shows the capability to generate interference effects between single signal photons via indistinguishability between the entangled idler photons. This paper extends the foundational principles of ZWM interferometry by integrating cavity-enhanced SPDCs, aiming to narrow photon bandwidths for improved coherence and photon pair generation efficiency, which is critical for applications in quantum information technologies, quantum encryption, and quantum imaging. This work explores the theoretical implication of employing singly resonant optical parametric oscillators within the ZWM interferometer to produce narrow-band single photons. By combining cavity-enhanced SPDCs with ZWM interferometry, this study fills a gap in current theoretical proposals, offering significant advancements in quantum cryptography and network applications that require reliable, narrow-band single photons.
Read full abstract