The Asteraceae family, particularly the Artemisia genus, presents taxonomic challenges due to limited morphological characteristics and frequent natural hybridization. Molecular tools, such as chloroplast genome analysis, offer solutions for accurate species identification. In this study, we sequenced and annotated the chloroplast genome of Artemisia littoricola sourced from Dokdo Island, employing comparative analyses across six diverse Artemisia species. Our findings reveal conserved genome structures with variations in repeat sequences and junction boundaries. Notably, the chloroplast genome of A. littoricola spans 150,985bp, consistent with other Artemisia species, and comprises 131 genes, including 86 protein-coding, 37 tRNA, and 8 rRNA genes. Among these genes, 16 possess a single intron, while clpP and ycf3 exhibit two introns each. Furthermore, 18 genes display duplicated copies within the IR regions. Moreover, the genome possesses 42 Simple Sequence Repeats (SSRs), predominantly abundant in A/T content and located within intergenic spacer regions. The analysis of codon usage revealed that the codons for leucine were the most frequent, with a preference for ending with A/U. While the chloroplast genome exhibited conservation overall, non-coding regions showed lower conservation compared to coding regions, with the Inverted Repeat (IR) region displaying higher conservation than single-copy regions. Phylogenetic analyses position A. littoricola within subgenus Dracunculus, indicating a close relationship with A. scoparia and A. desertorum. Additionally, biogeographic reconstructions suggest ancestral origins in East Asia, emphasizing Mongolia, China (North East and North Central and South Central China), and Korea. This study underscores the importance of chloroplast genomics in understanding Artemisia diversity and evolution, offering valuable insights into taxonomy, evolutionary patterns, and biogeographic history. These findings not only enhance our understanding of Artemisia's intricate biology but also contribute to conservation efforts and facilitate the development of molecular markers for further research and applications in medicine and agriculture.
Read full abstract