Semiconductor quantum dot-in-rods (QDIRs) have served in the broad applications such as luminescent applications, sensor technology, quantum information processing, due to their polarized emission and polarized absorption characteristics. The localized surface plasmon resonance (LSPR) characteristics of the noble metal nanostructures can regulate the fluorescence intensity by controlling the radiation and non-radiation channels of fluorescent substances. However, the reports on the fluorescence surface quenching of QDIRs by plasmonic nanoparticles (NPs) are very rare. Herein, we propose a new method to realize QDIRs orientation, as well as the fluorescence intensity can be regulated. The effect of Ag nanopatterned film on the fluorescence surface quenching of QDIRs is discussed from both theoretical and experimental perspectives. Generally, the direct combination of Ag nanopatterned film and QDIRs results in 75% fluorescence surface quenching. Through FDTD simulation, we further analyzed the modulation of fluorescence intensity of the dipole source by the Ag nanopatterned film. This work will be useful for the development of QDIRs in the future.
Read full abstract