The nanocomposite materials of poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO), poly(3,4-ethylenedioxythiophene)/MnO2 (PEDOT/MnO2), and poly(3, 4-ethylenedioxythiophene)/graphene oxide/MnO2 (PEDOT/GO/MnO2) were successfully prepared by facile and template-free solution method. The structure and morphology of nanonanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectra (UV–vis), field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), respectively. The catalytic activities of nanocomposites were investigated through the degradation processes of methylene blue (MB) solution under dark, UV light, and nature sunlight irradiation, respectively. The results displayed that nanocomposites were successfully synthesized, and PEDOT/GO had higher conjugation length and doped degree than pure PEDOT. However, the introduction of MnO2 could lead to the reduction of conjugation length and doped degree in PEDOT/MnO2 and PEDOT/GO/MnO2 nanocomposites. The field emission scanning electron microscope (FESEM) analysis also showed that both MnO2 and GO had some effect on the morphology of nanocomposites. The catalytic activities of pure PEDOT and nanocomposites were in the order of PEDOT/GO/MnO2 > PEDOT/MnO2 > PEDOT/GO > pure PEDOT. Besides, the catalytic results also showed that the highest degradation efficiency of MB after 7 h occurred in the PEDOT/GO/MnO2 composite in three irradiation.