Let P be a polygon and C a set of shortcuts, where each shortcut is a directed straight-line segment connecting two vertices of P. A shortcut hull of P is another polygon that encloses P and whose oriented boundary is composed of elements from C. We require P and the output shortcut hull to be weakly simple polygons, which we define as a generalization of simple polygons. Shortcut hulls find their application in cartography, where a common task is to compute simplified representations of area features. We aim at a shortcut hull that has a small area and a small perimeter. Our optimization objective is to minimize a convex combination of these two criteria. If no holes in the shortcut hull are allowed, the problem admits a straight-forward solution via computation of shortest paths. For the more challenging case in which the shortcut hull may contain holes, we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the input polygon's exterior. We use this problem as a starting point for investigating further variants, e.g., restricting the number of edges or bends. We demonstrate that shortcut hulls can be used for the schematization of polygons.