Application of microfluidic systems for the study of cellular behaviors has been a flourishing area of research in the past decade. In the process of probing cell biomechanics the passage of a cell through a narrow microchannel or a small pore has attracted much attention during the recent years. And the study of cellular deformability and transportability using these systems with enhanced resolution and accuracy has opened a new paradigm for high-throughput characterization of both healthy and diseased cell populations.Here we use the level-set method to explore the relationship between the transit time and mechanical properties of normal white blood cells (WBCs) and breast cancer epithelial cells (MCF7) under different microenvironmental parameters (i.e., pressure difference, cell size, effective cell surface tension, constriction size and taper angle) in a 2-D computational domain by considering the cell as a viscous drop. The novel biomechanical relations are obtained for each cell type by the Response Surface Method (RSM), relating microenvironmental parameters to the dimensionless entry time of the normal and cancer cells. Our results revealed that MCF7 cells show asignificantly different behavior (a bifurcating behavior when the pressure difference of inlet/outlet increases) in regards to the dimensionless entry time as a function of microchannel taper angle in comparison with the WBC. These results suggest that the microenvironmental parameters have a significant effect on the transportability of the cells and different cells have different behaviors in response to a specific microenvironmental parameter. Finally, it can be claimed that this method can be also utilized to distinguish between benign and cancerous cells or even to probe tumor heterogeneity toward high throughput cell cytometry.
Read full abstract