High refractive index, low birefringence photopolymers were created via the radical-mediated, ring opening homopolymerization of 1,2-dithiolane functionalized monomers and were subsequently evaluated as holographic recording media. This investigation systematically characterized the reaction kinetics, thermodynamics, and volume shrinkage of the 1,2-dithiolane homopolymerization as well as the optical transparency, refractive index, birefringence, and holographic performance of multifunctional 1,2-dithiolane functionalized monomers and their resultant polymers. Real-time kinetic and thermodynamic analyses of a monofunctional 1,2-dithiolane monomer, lipoic acid methyl ester (LipOMe), indicated rapid monomer conversion, exceeding 90% in 60 s, with an overall enthalpy of reaction of 18 ± 1 kJ/mol. The ring-opening polymerization resulted in low shrinkage (10.6 ± 0.3 cm3/mol dithiolane) and a significant bulk refractive index increase (0.030 ± 0.003). The resulting photopolymers exhibited high optical transparency, minimal haze, and negligible birefringence, suggesting the potential of 1,2-homopolymers as optical materials. To further explore the specific capabilities for use as high-performance holographic recording applications, several multifunctional monomers were synthesized with the ethanedithiol lipoic acid monomer (EDT-Lip2) selected for experimentation. Holographic diffraction gratings written using this monomer achieved a peak-to-mean refractive index modulation of 0.008 with minimal haze and birefringence.
Read full abstract