The literature written in Chinese mainly and in English with a small amount is reviewed to obtain the overall status of flywheel energy storage technologies in China. The theoretical exploration of flywheel energy storage (FES) started in the 1980s in China. The experimental FES system and its components, such as the flywheel, motor/generator, bearing, and power electronic devices, were researched around thirty years ago. About twenty organizations devote themselves to the R&D of FES technology, which is developing from theoretical and laboratory research to the stage of engineering demonstration and commercial application. After the research and accumulation in the past 30 years, the initial FES products were developed by some companies around 10 years ago. Today, the overall technical level of China’s flywheel energy storage is no longer lagging behind that of Western advanced countries that started FES R&D in the 1970s. The reported maximum tip speed of the new 2D woven fabric composite flywheel arrived at 900 m/s in the spin test. A steel alloy flywheel with an energy storage capacity of 125 kWh and a composite flywheel with an energy storage capacity of 10 kWh have been successfully developed. Permanent magnet (PM) motors with power of 250–1000 kW were designed, manufactured, and tested in many FES assemblies. The lower loss is carried out through innovative stator and rotor configuration, optimizing magnetic flux and winding arrangement for harmonic magnetic field suppression. Permanent magnetic bearings with high load ability up to 50–100 kN were developed both for a 1000 kW/16.7 kWh flywheel used for the drilling practice application in hybrid power of an oil well drilling rig and for 630 kW/125 kWh flywheels used in the 22 MW flywheel array applied to the flywheel and thermal power joint frequency modulation demonstration project. It is expected that the FES demonstration application power stations with a total cumulative capacity of 300 MW will be built in the next five years.