The development of stable high-performance n-type organic semiconductors for applications in organic field-effect transistors (OFETs) under ambient conditions is desirable but challenging. To address this issue, we here synthesized a series of functionalized-phenanthrene conjugated asymmetric N-heteroacenes, where the phenanthrene moiety was modified by N substitution or Br functionalization at different positions to induce various degrees of asymmetry in their structures. The photophysical and electrochemical properties of these molecules were studied, and their packing patterns were analysed. The OFETs based on these materials were fabricated through simple spin-coating method, and the as-resulted thin films were treated with different conditions. The devices exhibit typical n-type performances under ambient conditions with charge carrier mobilities up to 4.27 × 10-3 cm2V-1s-1. The crystallinities and morphologies of these thin films were studied to investigate the correlations between the device performances and thin-film characteristics. Our study suggests that phenanthrene conjugated N-heteroacenes can be developed as promising air-stable solution-processable n-type semiconducting materials, and Br modification at certain positions of phenanthrene is beneficial in adjusting the thin-film properties for the improvement of OFET performances.
Read full abstract